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Abstract
The first ever energy-preserving B-series numerical integration method for
(ordinary) differential equations is presented and applied to several Hamiltonian
systems. Related novel Lie algebraic results are also discussed.

PACS numbers: 02.60.Lj, 02.60.−x

1. Introduction

In recent years, geometric numerical integration methods have come to the fore, partly as an
alternative to traditional methods such as Runge–Kutta methods.

A numerical method is called geometric if it preserves one or more physical/geometric
properties of the system exactly (i.e. up to round-off error). Examples of such geometric
properties that can be preserved are (first) integrals, symplectic structure, symmetries and
reversing symmetries, phase–space volume, Lyapunov functions, foliations, etc. Geometric
methods have applications in many areas of physics, including celestial mechanics, particle
accelerators, molecular dynamics, fluid dynamics, pattern formation, plasma physics, reaction-
diffusion equations, and meteorology. Recent surveys of this field have been given in [9, 12,
14, 18].

This paper will be concerned with the preservation of energy (cf [7]), a crucial property of
mechanical systems. Let us therefore first review the status quo with respect to the preservation
of first integrals more generally. An ordinary differential equation

dx

dt
= f (x), x ∈ R

n. (1)

possesses the first integral I (x) if f (x) · ∇I (x) = 0. In [16] it was shown that (under some
mild technical conditions) f (x) · ∇I (x) = 0 if and only if there exists a skew-symmetric
matrix S(x) such that

f (x) = S(x)∇I (x). (2)
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This result was used in [15, 16] to construct general integral-preserving integration methods
using the so-called discrete gradients. The most prominent alternative methods to preserve
integrals are projection methods [9]. Drawbacks of both these classes of algorithms are that
they require the input of the functional form of the integral to be conserved, and that they are
not linearly covariant [17].

2. Energy-preserving numerical integration methods

In this paper, we describe a novel class of B-series methods (this term will be explained below)
that preserves energy for all (canonical) Hamiltonian vector fields. Moreover, this class of
methods is user friendly in the sense that the user is not required to input the energy function,
or even be aware that the system preserves energy. The methods require only knowledge of the
vector field itself (a necesssary input for all integration methods), i.e. when we are integrating
the ordinary differential equation (1) we require the vector field f . The prototype of this
novel class of energy-preserving B-series methods is the following method, which we call an
‘averaged vector field method’:

xn+1 − xn

h
=

∫ 1

0
f ((1 − ξ)xn + ξxn+1) dξ, (3)

where here and below h denotes the time step of the method.
To show that the method (3) preserves energy, we proceed as follows: first substitute

f (x) = S∇H(x) (4)

in (3). Here S denotes an arbitrary constant skew-symmetric matrix and H denotes the
(Hamiltonian) energy function. This substitution yields

xn+1 − xn

h
= S

∫ 1

0
∇H((1 − ξ)xn + ξxn+1) dξ. (5)

Now take the scalar product with
∫ 1

0 ∇H ((1 − ξ)xn + ξxn+1) dξ on both sides of the equation,
yielding

1

h

∫ 1

0
(xn+1 − xn) · ∇H((1 − ξ)xn + ξxn+1) dξ = 0, (6)

i.e.

1

h

∫ 1

0

d

dξ
H((1 − ξ)xn + ξxn+1) dξ = 0 (7)

which, using the Fundamental Theorem of Calculus, yields

1

h
(H(xn+1) − H(xn)) = 0. (8)

It follows that the energy H is conserved at every time step, provided the vector field has the
form (4). (Note that we do not require the constant matrix S to be invertible. Hence our
methods also apply to Poisson systems with constant Poisson structures.)

3. Numerical results

The integrator (3) was applied to the double well and Hénon–Heiles systems, with respective
Hamiltonian functions

H(q, p) = 1
2p2 + 1

2 (q2 − 1)2 (9)
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Figure 1. Double well system: global errors incurred using the averaged vector field (solid line)
and leapfrog (dashed line) integrators. With initial condition q = −1, p = 1.000 001 the initial
energy is marginally larger than the critical value Ec = 1

2 . The step size was h = 0.01 and
tmax = 10.

for the double well system, and

H(q1, q2, p1, p2) = 1
2

(
q2

1 + q2
2 + p2

1 + p2
2

)
+ q2

1q2 − 1
3q3

2 (10)

for Hénon–Heiles. The equations of motion are as determined by the canonical matrix

S = (
0 Id

−Id 0

)
in both cases [13]. Both systems have a critical energy value Ec at which the

qualitative nature of their solutions changes—for the double well
(
Ec = 1

2

)
from oscillations

around one potential minimum to an orbit that encloses both, and for Hénon–Heiles
(
Ec = 1

6

)
from bounded to unbounded orbits. In the experiments shown here, for the double well the
initial energy was slightly larger than Ec, and for Hénon–Heiles it was exactly Ec with initial
spatial coordinates (q1, q2) at a point on the boundary of the critical triangular region (see [13])
shown in figure 2. For comparisons we also solve these two systems using a second-order
symplectic method, the leapfrog method [9].

For the double well system, both integrators exhibit the correct qualitative behaviour, but
the leapfrog error (figure 1) grows rapidly to values approximating the maximum diameter of
the phase-plane orbit. For Hénon–Heiles the averaged vector field integrator (figure 2, left)
stays within the stable zone, whilst leapfrog (figure 2, right) strays outside and soon becomes
completely unstable.

4. Energy-preserving linear combinations of rooted trees

The importance of algebras of trees in quantum field theory has recently become apparent
(cf e.g. [3]). The connection between the algebras in the field theory and those in numerical
integration was pointed out in [1]. Here we will explore the algebraic implications of our
novel class of energy-preserving integrators.

For any approximate solution

xn+1 = φh(xn) (11)

3
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Figure 2. Hénon–Heiles system: configuration space orbits obtained using the averaged vector
field (left-hand plot) and leapfrog (right-hand plot) integrators. The initial point (marked) on the
lower edge of the triangle at q1 = 0.1, q2 = −0.5, p1 = p2 = 0 corresponds to the critical energy
value Ec = 1

6 . The step size was h = 0.16 and tmax = 71.

of any differential equation dx/dt = f (x), one can introduce the so-called modified vector
field dx/dt = f̃(h)(x) for which formally (11) provides the exact solution, i.e. φh = ehf̃(h)

∂
∂x .

The advantage of geometric integration methods is that, loosely speaking, their modified
vector fields belong to the same class as the original vector fields one wishes to integrate.
That is, modified vector fields of symplectic methods are Hamiltonian, modified vector
fields of volume-preserving methods are divergence-free, modified vector fields of integral-
preserving methods preserve the original integral, etc [8]. Motivated by this connection we
have determined the modified vector field for our averaged vector field method (3). Its ith
component is given by

f̃ i
(h) = f i + 1

12h2f i
j f

j

k f k + O(h4) . . . (12)

where subscripts denote partial derivatives
(
i.e. f i

j = ∂f i

∂xj

)
, and repeated indices imply

summation. Products such as f i
j f

j

k f k are called elementary differentials3. Closer inspection
reveals the basis of energy-preserving linear combinations of elementary differentials. This is
illustrated in table 1, where the results are given up to order 5.

Here we have used the standard representation of elementary differentials by rooted trees
[2, 10]. For example, denotes f i

j f
j

klf
kf l . The fact that, e.g. the fourth-order combination

in table 1 is energy preserving can be shown as follows:

f i
j f

j

klf
kf l + f i

jkf
jf k

l f l = S̃(x)∇H(x), (13)

where (in accordance with (2)) S̃(x) is a skew-symmetric matrix. It is given by

S̃ = SHST S + ST SHS, (14)

with the symmetric matrices H(x) and T (x) being given by

Hij := ∂2H

∂xi∂xj

, and Tij := ∂3H

∂xi∂xj ∂xk

Skl ∂H

∂xl

. (15)

3 B-series methods may be defined as those methods whose modified vector fields can (formally) be expanded in
terms of elementary differentials.
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Table 1. Energy-preserving linear combinations of rooted trees (elementary differentials), up to
fifth order.

Order Energy-preserving linear combinations

1 •
2 –

3

4 +

5

, − , + , + ,

More generally, energy-preserving linear combinations of rooted trees/elementary
differentials are given by

tn

t2

t1

t1

tn−1

tn

when n is even, and
tn

t2

t1

t1

tn−1

tn

when n is odd, where t1, t2, . . . , tn are arbitrary trees. The set of all energy-preserving linear
combinations of rooted trees/elementary differentials forms a large Lie sub-algebra of the Lie
algebra of all rooted trees/elementary differentials.

5. Discussion

• After we discovered these new energy-preserving methods, we found that, in [5], Faou
et al have derived the conditions a B-series method must satisfy in order to be energy-
preserving (cf also [4]). However it seems that until now no actual method had been
found that satisfies the derived conditions.

• Space limitations prevent us exhibiting our entire new class of energy-preserving B-
series methods here 4. We restrict ourselves to exhibiting the following simple (energy-
preserving) generalization of the method (3):

xn+1 − xn

h
= (

δi
j + αh2f i

k (x̂)f k
j (x̂)

) ∫ 1

0
f j ((1 − ξ)xn + ξxn+1) dξ, (16)

where α is an arbitrary constant, δi
j is the Kronecker delta, and we can take e.g. x̂ = xn

or x̂ = xn+xn+1
2 .

4 We hope to expand on the contents of this paper in a forthcoming publication.
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For α = 0 we recover the second-order method (3). For α = − 1
12 and x̂ = xn the method

is third order. For α = − 1
12 and x̂ = xn+xn+1

2 the method is of fourth order accuracy.
• An unusual feature of the methods given in this paper (both methods (3) as well as (16))

is that they require anti-derivatives (i.e. definite integrals) of the vector field. Such a
feature is not entirely novel. Something similar is required in general volume-preserving
integrators. For vector fields where these anti-derivatives are available in a closed form
(such as polynomial vector fields) this of course presents no barrier. The general case
awaits further investigation.

• The B-series methods presented in this paper share the advantageous properties common
to all B-series methods [19]. For example, they preserve all linear integrals and foliations,
all affine symmetries, and are covariant with respect to all affine transformations. In
addition, those methods that are self-adjoint preserve all affine reversing symmetries.

• It has been proven that, in general, there can exist no numerical integration method that
preserves both the symplectic structure as well as the energy of a Hamiltonian system
[6]. Therefore for a given problem, one must make a choice. Much can be said about
the advantages and disadvantages of either choice, cf e.g. [20]. In general we expect
energy-preservation to be more important in lower dimensions than in higher dimensions,
and particularly for compact level sets, and even more particularly close to critical level
sets. An advantage of symplectic integrators is their preservation of quasi-periodic orbits.
For Hamiltonian systems with (affine) time-reversal symmetry, this may also be achieved
by self-adjoint energy-preserving methods such as (3).

• Note that we do not claim that our methods preserve integrals of arbitrary differential
equations [4]. Our methods preserve the integral only for those systems (2) where the
skew-symmetric matrix S is constant.

• It can be shown that the ratio of the dimension of the space of nth-order energy-preserving
linear combinations of rooted trees to the dimension of the space of nth-order rooted trees
approaches 1 as n approaches ∞.
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